Time-Changed Poisson Processes (1105.0657v1)
Abstract: We consider time-changed Poisson processes, and derive the governing difference-differential equations (DDE) these processes. In particular, we consider the time-changed Poisson processes where the the time-change is inverse Gaussian, or its hitting time process, and discuss the governing DDE's. The stable subordinator, inverse stable subordinator and their iterated versions are also considered as time-changes. DDE's corresponding to probability mass functions of these time-changed processes are obtained. Finally, we obtain a new governing partial differential equation for the tempered stable subordinator of index $0<\beta<1,$ when $\beta $ is a rational number. We then use this result to obtain the governing DDE for the mass function of Poisson process time-changed by tempered stable subordinator. Our results extend and complement the results in Baeumer et al. \cite{B-M-N} and Beghin et al. \cite{BO-1} in several directions.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.