2000 character limit reached
Comparison Theorems in Lorentzian Geometry and applications to spacelike hypersurfaces (1104.5612v2)
Published 29 Apr 2011 in math.DG
Abstract: In this paper we prove Hessian and Laplacian comparison theorems for the Lorentzian distance function in a spacetime with sectional (or Ricci) curvature bounded by a certain function by means of a comparison criterion for Riccati equations. Using these results, under suitable conditions, we are able to obtain some estimates on the higher order mean curvatures of spacelike hypersurfaces satisfying a Omori-Yau maximum principle for certain elliptic operators.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.