On local-global divisibility by $p^n$ in elliptic curves (1104.4762v2)
Abstract: Let $p$ be a prime number and let $ k $ be a number field, which does not contain the field $\mathbb{Q} (\zeta_p + \bar{\zeta_p})$. Let $\mathcal{E}$ be an elliptic curve defined over $k$. We prove that if there are no $k$-rational torsion points of exact order $p$ on $\E$, then the local-global principle holds for divisibility by $pn$, with $n$ a natural number. As a consequence of the deep theorem of Merel, for $p$ larger than a constant depending only on the degree of $k$, there are no counterexamples to the local-global divisibility principle. Nice and deep works give explicit small constants for elliptic curves defined over a number field of degree at most 5 over $\mathbb{Q}.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.