Papers
Topics
Authors
Recent
Search
2000 character limit reached

Convex obstacle numbers of outerplanar graphs and bipartite permutation graphs

Published 24 Apr 2011 in cs.DM, cs.CG, and math.CO | (1104.4656v3)

Abstract: The disjoint convex obstacle number of a graph G is the smallest number h such that there is a set of h pairwise disjoint convex polygons (obstacles) and a set of n points in the plane (corresponding to V(G)) so that a vertex pair uv is an edge if and only if the corresponding segment uv does not meet any obstacle. We show that the disjoint convex obstacle number of an outerplanar graph is always at most 5, and of a bipartite permutation graph at most 4. The former answers a question raised by Alpert, Koch, and Laison. We complement the upper bound for outerplanar graphs with the lower bound of 4.

Citations (16)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.