Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 91 tok/s
Gemini 2.5 Pro 58 tok/s Pro
GPT-5 Medium 29 tok/s
GPT-5 High 29 tok/s Pro
GPT-4o 102 tok/s
GPT OSS 120B 462 tok/s Pro
Kimi K2 181 tok/s Pro
2000 character limit reached

Voter Model with Time dependent Flip-rates (1104.2840v2)

Published 14 Apr 2011 in cond-mat.stat-mech, math-ph, math.MP, math.PR, and physics.soc-ph

Abstract: We introduce time variation in the flip-rates of the Voter Model. This type of generalisation is relevant to models of ageing in language change, allowing the representation of changes in speakers' learning rates over their lifetime and may be applied to any other similar model in which interaction rates at the microscopic level change with time. The mean time taken to reach consensus varies in a nontrivial way with the rate of change of the flip-rates, varying between bounds given by the mean consensus times for static homogeneous (the original Voter Model) and static heterogeneous flip-rates. By considering the mean time between interactions for each agent, we derive excellent estimates of the mean consensus times and exit probabilities for any time scale of flip-rate variation. The scaling of consensus times with population size on complex networks is correctly predicted, and is as would be expected for the ordinary voter model. Heterogeneity in the initial distribution of opinions has a strong effect, considerably reducing the mean time to consensus, while increasing the probability of survival of the opinion which initially occupies the most slowly changing agents. The mean times to reach consensus for different states are very different. An opinion originally held by the fastest changing agents has a smaller chance to succeed, and takes much longer to do so than an evenly distributed opinion.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube