Papers
Topics
Authors
Recent
Search
2000 character limit reached

Sound and complete axiomatizations of coalgebraic language equivalence

Published 14 Apr 2011 in cs.LO and math.CT | (1104.2803v6)

Abstract: Coalgebras provide a uniform framework to study dynamical systems, including several types of automata. In this paper, we make use of the coalgebraic view on systems to investigate, in a uniform way, under which conditions calculi that are sound and complete with respect to behavioral equivalence can be extended to a coarser coalgebraic language equivalence, which arises from a generalised powerset construction that determinises coalgebras. We show that soundness and completeness are established by proving that expressions modulo axioms of a calculus form the rational fixpoint of the given type functor. Our main result is that the rational fixpoint of the functor $FT$, where $T$ is a monad describing the branching of the systems (e.g. non-determinism, weights, probability etc.), has as a quotient the rational fixpoint of the "determinised" type functor $\bar F$, a lifting of $F$ to the category of $T$-algebras. We apply our framework to the concrete example of weighted automata, for which we present a new sound and complete calculus for weighted language equivalence. As a special case, we obtain non-deterministic automata, where we recover Rabinovich's sound and complete calculus for language equivalence.

Citations (75)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.