Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 164 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 72 tok/s Pro
Kimi K2 204 tok/s Pro
GPT OSS 120B 450 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

Estimation of a sparse group of sparse vectors (1104.1771v2)

Published 10 Apr 2011 in math.ST and stat.TH

Abstract: We consider a problem of estimating a sparse group of sparse normal mean vectors. The proposed approach is based on penalized likelihood estimation with complexity penalties on the number of nonzero mean vectors and the numbers of their "significant" components, and can be performed by a computationally fast algorithm. The resulting estimators are developed within Bayesian framework and can be viewed as MAP estimators. We establish their adaptive minimaxity over a wide range of sparse and dense settings. The presented short simulation study demonstrates the efficiency of the proposed approach that successfully competes with the recently developed sparse group lasso estimator.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.