Papers
Topics
Authors
Recent
2000 character limit reached

Inverse problems with partial data for a magnetic Schrödinger operator in an infinite slab and on a bounded domain

Published 5 Apr 2011 in math.AP, math-ph, and math.MP | (1104.0789v1)

Abstract: In this paper we study inverse boundary value problems with partial data for the magnetic Schr\"odinger operator. In the case of an infinite slab in $Rn$, $n\ge 3$, we establish that the magnetic field and the electric potential can be determined uniquely, when the Dirichlet and Neumann data are given either on the different boundary hyperplanes of the slab or on the same hyperplane. This is a generalization of the results of [41], obtained for the Schr\"odinger operator without magnetic potentials. In the case of a bounded domain in $Rn$, $n\ge 3$, extending the results of [2], we show the unique determination of the magnetic field and electric potential from the Dirichlet and Neumann data, given on two arbitrary open subsets of the boundary, provided that the magnetic and electric potentials are known in a neighborhood of the boundary. Generalizing the results of [31], we also obtain uniqueness results for the magnetic Schr\"odinger operator, when the Dirichlet and Neumann data are known on the same part of the boundary, assuming that the inaccessible part of the boundary is a part of a hyperplane.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.