Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 93 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 33 tok/s Pro
GPT-4o 128 tok/s Pro
Kimi K2 202 tok/s Pro
GPT OSS 120B 449 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Linear programming problems for frontier estimation (1103.5925v1)

Published 30 Mar 2011 in stat.ME

Abstract: We propose new estimates for the frontier of a set of points. They are defined as kernel estimates covering all the points and whose associated support is of smallest surface. The estimates are written as linear combinatio- ns of kernel functions applied to the points of the sample. The coefficients of the linear combination are then computed by solving a linear programming problem. In the general case, the solution of the optimizat- ion problem is sparse, that is, only a few coefficients are non zero. The corresponding points play the role of support vectors in the statistical learning theory. The L_1 error between the estimated and the true frontiers is shown to be almost surely converging to zero, and the rate of convergence is provided. The behaviour of the estimates on finite sample situations is illustrated on some simulations.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.