2000 character limit reached
Stationary distribution and cover time of random walks on random digraphs (1103.4317v1)
Published 22 Mar 2011 in math.CO and cs.DM
Abstract: We study properties of a simple random walk on the random digraph D_{n,p} when np={d\log n},\; d>1. We prove that whp the stationary probability pi_v of a vertex v is asymptotic to deg-(v)/m where deg-(v) is the in-degree of v and m=n(n-1)p is the expected number of edges of D_{n,p}. If d=d(n) tends to infinity with n, the stationary distribution is asymptotically uniform whp. Using this result we prove that, for d>1, whp the cover time of D_{n,p} is asymptotic to d\log (d/(d-1))n\log n. If d=d(n) tends to infinity with n, then the cover time is asymptotic to n\log n.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.