Papers
Topics
Authors
Recent
Search
2000 character limit reached

Complements and higher resonance varieties of hyperplane arrangements

Published 21 Mar 2011 in math.AG | (1103.3930v3)

Abstract: Hyperplane arrangements form the geometric counterpart of combinatorial objects such as matroids. The shape of the sequence of Betti numbers of the complement of a hyperplane arrangement is of particular interest in combinatorics, where they are known, up to a sign, as Whitney numbers of the first kind, and appear as the coefficients of chromatic, or characteristic, polynomials. We show that certain combinations, some nonlinear, of these Betti numbers satisfy Schur positivity. At the same time, we study the higher degree resonance varieties of the arrangement. We draw some consequences, using homological algebra results and vector bundles techniques, of the fact that all resonance varieties are determinantal.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.