Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 200 tok/s Pro
GPT OSS 120B 427 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Tail estimates for stochastic fixed point equations via nonlinear renewal theory (1103.2317v2)

Published 11 Mar 2011 in math.PR

Abstract: This paper presents precise large deviation estimates for solutions to stochastic fixed point equations of the type V =_d f(V), where f(v) = Av + g(v) for a random function g(v) = o(v) a.s. as v tends to infinity. Specifically, we provide an explicit characterization of the pair (C,r) in the tail estimate P(V > u) ~ C u-r as u tends to infinity, and also present a Lundberg-type upper bound of the form P(V > u) <= D(u) u-r. To this end, we introduce a novel dual change of measure on a random time interval and analyze the path properties, using nonlinear renewal theory, of the Markov chain resulting from the forward iteration of the given stochastic fixed point equation. In the process, we establish several new results in the realm of nonlinear renewal theory for these processes. As a consequence of our techniques, we also establish a new characterization of the extremal index. Finally, we provide some extensions of our methods to Markov-driven sequences.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.