Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 35 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 108 tok/s Pro
Kimi K2 190 tok/s Pro
GPT OSS 120B 438 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Ensemble transform Kalman-Bucy filters (1103.2235v6)

Published 11 Mar 2011 in math.NA, math.DS, and math.PR

Abstract: Two recent works have adapted the Kalman-Bucy filter into an ensemble setting. In the first formulation, BR10, the full ensemble is updated in the analysis step as the solution of single set of ODEs in pseudo-BGR09, the ensemble of perturbations is updated by the solution of an ordinary differential equation (ODE) in pseudo-time, while the mean is updated as in the standard KF. In the second formulation, BR10, the full ensemble is updated in the analysis step as the solution of single set of ODEs in pseudo-time. Neither requires matrix inversions except for the frequently diagonal observation error covariance. We analyze the behavior of the ODEs involved in these formulations. We demonstrate that they stiffen for large magnitudes of the ratio of background to observational error covariance, and that using the integration scheme proposed in both BGR09 and BR10 can lead to failure. An integration scheme that is both stable and is not computationally expensive is proposed. We develop transform-based alternatives for these Bucy-type approaches so that the integrations are computed in ensemble space where the variables are weights (of dimension equal to the ensemble size) rather than model variables. Finally, the performance of our ensemble transform Kalman-Bucy implementations is evaluated using three models: the 3-variable Lorenz 1963 model, the 40-variable Lorenz 1996 model, and a medium complexity atmospheric general circulation model (AGCM) known as SPEEDY. The results from all three models are encouraging and warrant further exploration of these assimilation techniques.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.