Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 57 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 20 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 93 tok/s Pro
Kimi K2 176 tok/s Pro
GPT OSS 120B 449 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Random interlacements and amenability (1103.2109v2)

Published 10 Mar 2011 in math.PR

Abstract: We consider the model of random interlacements on transient graphs, which was first introduced by Sznitman [Ann. of Math. (2) (2010) 171 2039-2087] for the special case of ${\mathbb{Z}}d$ (with $d\geq3$). In Sznitman [Ann. of Math. (2) (2010) 171 2039-2087], it was shown that on ${\mathbb{Z}}d$: for any intensity $u>0$, the interlacement set is almost surely connected. The main result of this paper says that for transient, transitive graphs, the above property holds if and only if the graph is amenable. In particular, we show that in nonamenable transitive graphs, for small values of the intensity u the interlacement set has infinitely many infinite clusters. We also provide examples of nonamenable transitive graphs, for which the interlacement set becomes connected for large values of u. Finally, we establish the monotonicity of the transition between the "disconnected" and the "connected" phases, providing the uniqueness of the critical value $u_c$ where this transition occurs.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.