A version of Tutte's polynomial for hypergraphs (1103.1057v1)
Abstract: Tutte's dichromate T(x,y) is a well known graph invariant. Using the original definition in terms of internal and external activities as our point of departure, we generalize the valuations T(x,1) and T(1,y) to hypergraphs. In the definition, we associate activities to hypertrees, which are generalizations of the indicator function of the edge set of a spanning tree. We prove that hypertrees form a lattice polytope which is the set of bases in a polymatroid. In fact, we extend our invariants to integer polymatroids as well. We also examine hypergraphs that can be represented by planar bipartite graphs, write their hypertree polytopes in the form of a determinant, and prove a duality property that leads to an extension of Tutte's Tree Trinity Theorem.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.