Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 87 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 102 tok/s Pro
Kimi K2 166 tok/s Pro
GPT OSS 120B 436 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

MC Elements in Pronilpotent DG Lie Algebras (1103.1035v4)

Published 5 Mar 2011 in math.QA and math.KT

Abstract: Consider a pronilpotent DG (differential graded) Lie algebra over a field of characteristic 0. In the first part of the paper we introduce the reduced Deligne groupoid associated to this DG Lie algebra. We prove that a DG Lie quasi-isomorphism between two such algebras induces an equivalence between the corresponding reduced Deligne groupoids. This extends the famous result of Goldman- Millson (attributed to Deligne) to the unbounded pronilpotent case. In the second part of the paper we consider the Deligne 2-groupoid. We show it exists under more relaxed assumptions than known before (the DG Lie algebra is either nilpotent or of quasi quantum type). We prove that a DG Lie quasi-isomorphism between such DG Lie algebras induces a weak equivalence between the corresponding Deligne 2-groupoids. In the third part of the paper we prove that an L-infinity quasi-isomorphism between pronilpotent DG Lie algebras induces a bijection between the sets of gauge equivalence classes of Maurer-Cartan elements. This extends a result of Kontsevich and others to the pronilpotent case.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.