Papers
Topics
Authors
Recent
2000 character limit reached

Calibration of structural and reduced-form recovery models

Published 23 Feb 2011 in q-fin.RM | (1102.4864v1)

Abstract: In recent years research on credit risk modelling has mainly focused on default probabilities. Recovery rates are usually modelled independently, quite often they are even assumed constant. Then, however, the structural connection between recovery rates and default probabilities is lost and the tails of the loss distribution can be underestimated considerably. The problem of underestimating tail losses becomes even more severe, when calibration issues are taken into account. To demonstrate this we choose a Merton-type structural model as our reference system. Diffusion and jump-diffusion are considered as underlying processes. We run Monte Carlo simulations of this model and calibrate different recovery models to the simulation data. For simplicity, we take the default probabilities directly from the simulation data. We compare a reduced-form model for recoveries with a constant recovery approach. In addition, we consider a functional dependence between recovery rates and default probabilities. This dependence can be derived analytically for the diffusion case. We find that the constant recovery approach drastically and systematically underestimates the tail of the loss distribution. The reduced-form recovery model shows better results, when all simulation data is used for calibration. However, if we restrict the simulation data used for calibration, the results for the reduced-form model deteriorate. We find the most reliable and stable results, when we make use of the functional dependence between recovery rates and default probabilities.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.