2000 character limit reached
From triangulated categories to module categories via localisation II: Calculus of fractions
Published 22 Feb 2011 in math.CT and math.RT | (1102.4597v2)
Abstract: We show that the quotient of a Hom-finite triangulated category C by the kernel of the functor Hom(T, -), where T is a rigid object, is preabelian. We further show that the class of regular morphisms in the quotient admit a calculus of left and right fractions. It follows that the Gabriel-Zisman localisation of the quotient at the class of regular morphisms is abelian. We show that it is equivalent to the category of finite dimensional modules over the endomorphism algebra of T in C.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.