Papers
Topics
Authors
Recent
2000 character limit reached

Solving k-Set Agreement with Stable Skeleton Graphs

Published 22 Feb 2011 in cs.DC | (1102.4423v1)

Abstract: In this paper we consider the k-set agreement problem in distributed message-passing systems using a round-based approach: Both synchrony of communication and failures are captured just by means of the messages that arrive within a round, resulting in round-by-round communication graphs that can be characterized by simple communication predicates. We introduce the weak communication predicate PSources(k) and show that it is tight for k-set agreement, in the following sense: We (i) prove that there is no algorithm for solving (k-1)-set agreement in systems characterized by PSources(k), and (ii) present a novel distributed algorithm that achieves k-set agreement in runs where PSources(k) holds. Our algorithm uses local approximations of the stable skeleton graph, which reflects the underlying perpetual synchrony of a run. We prove that this approximation is correct in all runs, regardless of the communication predicate, and show that graph-theoretic properties of the stable skeleton graph can be used to solve k-set agreement if PSources(k) holds.

Citations (9)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.