Papers
Topics
Authors
Recent
2000 character limit reached

Bayesian Inference in the Scaling Analysis of Critical Phenomena (1102.4149v3)

Published 21 Feb 2011 in cond-mat.stat-mech, cond-mat.str-el, physics.comp-ph, and physics.data-an

Abstract: To determine the universality class of critical phenomena, we propose a method of statistical inference in the scaling analysis of critical phenomena. The method is based on Bayesian statistics, most specifically, the Gaussian process regression. It assumes only the smoothness of a scaling function, and it does not need a form. We demonstrate this method for the finite-size scaling analysis of the Ising models on square and triangular lattices. Near the critical point, the method is comparable in accuracy to the least-square method. In addition, it works well for data to which we cannot apply the least-square method with a polynomial of low degree. By comparing the data on triangular lattices with the scaling function inferred from the data on square lattices, we confirm the universality of the finite-size scaling function of the two-dimensional Ising model.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.