Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 149 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 35 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 92 tok/s Pro
Kimi K2 196 tok/s Pro
GPT OSS 120B 425 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

The sectorial projection defined from logarithms (1102.4051v3)

Published 20 Feb 2011 in math.AP, math.FA, and math.SP

Abstract: For a classical elliptic pseudodifferential operator P of order m>0 on a closed manifold X, such that the eigenvalues of the principal symbol p_m(x,\xi) have arguments in \,]\theta,\phi [\, and \,]\phi, \theta +2\pi [\, (\theta <\phi <\theta +2\pi), the sectorial projection \Pi_{\theta, \phi}(P) is defined essentially as the integral of the resolvent along {e{i\phi}R_+}\cup {e{i\theta}R_+}. In a paper, Booss-Bavnbek, Chen, Lesch and Zhu have pointed out that there is a flaw in several published proofs that \P_{\theta, \phi}(P) is a \psi do of order 0; namely that p_m(x,\xi) cannot in general be modified to allow integration of (p_m(x,\xi)-\lambda){-1} along {e{i\phi}R_+}\cup {e{i\theta}R_+} simultaneously for all \xi . We show that the structure of \Pi_{\theta, \phi}(P) as a \psi do of order 0 can be deduced from the formula \Pi_{\theta, \phi}(P)= (i/(2\pi))(\log_\theta (P) - \log_\phi (P)) proved in an earlier work (coauthored with Gaarde). In the analysis of \log_\theta (P) one need only modify p_m(x,\xi) in a neighborhood of e{i\theta}R_+; this is known to be possible from Seeley's 1967 work on complex powers.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.