Papers
Topics
Authors
Recent
2000 character limit reached

On quadratic distinction of automorphic sheaves

Published 17 Feb 2011 in math.AG, math.NT, and math.RT | (1102.3469v1)

Abstract: We prove a geometric version of a classical result on the characterization of an irreducible cuspidal automorphic representation of $\mathrm{GL}n(\mathbb{A}_E)$ being the base change of a stable cuspidal packet of the quasi-split unitary group associated to the quadratic extension $E/F$, via the nonvanishing of certain period integrals, called being distinguished. We show that certain cohomology of an automorphic sheaf of $\mathrm{GL}{n,X'}$ is nonvanishing if and only if the corresponding local system $E$ on $X'$ is conjugate self-dual with respect to an \'{e}tale double cover $X'/X$ of curves, which directly relates to the base change from the associated unitary group. In particular, the geometric setting makes sense for any base field.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.