Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
120 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On The Dynamics Of The Rational Family $\mathbf{f_t(z)=-\frac{t}{4}\frac{(z^{2}-2)^{2}}{z^{2}-1}}$ (1102.3401v3)

Published 16 Feb 2011 in math.DS and math.CV

Abstract: In this paper we discuss the dynamics as well as the structure of the parameter space of the one-parameter family of rational maps $\ds f_t(z)=-\frac{t}{4}\frac{(z{2}-2){2}}{z{2}-1}$ with free critical orbit $\pm\sqrt{2}\xrightarrow{(2)}0\xrightarrow{(4)}t\xrightarrow{(1)}...$. In particular it is shown that for any escape parameter $t$ the boundary of the basin at infinity $\A_t$ is either a Cantor set, a curve with infinitely many complementary components, or else a Jordan curve. In the latter case the Julia set is a Sierpi\'nski curve.

Summary

We haven't generated a summary for this paper yet.