A linearized stabilizer formalism for systems of finite dimension (1102.3354v4)
Abstract: The stabilizer formalism is a scheme, generalizing well-known techniques developed by Gottesman [quant-ph/9705052] in the case of qubits, to efficiently simulate a class of transformations ("stabilizer circuits", which include the quantum Fourier transform and highly entangling operations) on standard basis states of d-dimensional qudits. To determine the state of a simulated system, existing treatments involve the computation of cumulative phase factors which involve quadratic dependencies. We present a simple formalism in which Pauli operators are represented using displacement operators in discrete phase space, expressing the evolution of the state via linear transformations modulo D <= 2d. We thus obtain a simple proof that simulating stabilizer circuits on n qudits, involving any constant number of measurement rounds, is complete for the complexity class coMod_{d}L and may be simulated by O(log(n)2)-depth boolean circuits for any constant d >= 2.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.