Papers
Topics
Authors
Recent
Search
2000 character limit reached

Partial model categories and their simplicial nerves

Published 12 Feb 2011 in math.AT and math.CT | (1102.2512v2)

Abstract: In this note we consider partial model categories, by which we mean relative categories that satisfy a weakened version of the model category axioms involving only the weak equivalences. More precisely, a partial model category will be a relative category that has the two out of six property and admits a 3-arrow calculus. We then show that Charles Rezk's result that the simplicial space obtained from a simplicial model category by taking a Reedy fibrant replacement of its simplicial nerve is a complete Segal space also holds for these partial model categories. We also note that conversely every complete Segal space is Reedy equivalent to the simplicial nerve of a partial model category and in fact of a homotopically full subcategory of a category of diagrams of simplicial sets.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.