Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 79 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 199 tok/s Pro
GPT OSS 120B 444 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

The splitting lemmas for nonsmooth functionals on Hilbert spaces (1102.2062v2)

Published 10 Feb 2011 in math.FA and math.GT

Abstract: The usual Gromoll-Meyer's generalized Morse lemma near degenerate critical points on Hilbert spaces, so called splitting lemma, is stated for at least $C2$-smooth functionals. In this paper we establish a splitting theorem and a shifting theorem for a class of continuously directional differentiable functionals (lower than $C1$) on a Hilbert space $H$ which have higher smoothness (but lower than $C2$) on a densely and continuously imbedded Banach space $X\subset H$ near a critical point lying in $X$. (This splitting theorem generalize almost all previous ones to my knowledge). Moreover, a new theorem of Poincar\'e-Hopf type and a relation between critical groups of the functional on $H$ and $X$ are given. The corresponding version at critical submanifolds is presented. We also generalize the Bartsch-Li's splitting lemma at infinity in \cite{BaLi} and some variants of it to a class of continuously directional differentiable functionals on Hilbert spaces. Our proof methods are to combine the proof ideas of the Morse-Palais lemma due to Duc-Hung-Khai \cite{DHK} with some techniques from \cite{JM, Skr, Va1}. Our theory is applicable to the Lagrangian system on compact manifolds and boundary value problems for a large class of nonlinear higher order elliptic equations.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.