Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 80 tok/s
Gemini 2.5 Pro 60 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 87 tok/s Pro
Kimi K2 173 tok/s Pro
GPT OSS 120B 433 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Sharp Moser-Trudinger inequalities for the Laplacian without boundary conditions (1102.1924v1)

Published 9 Feb 2011 in math.FA

Abstract: We derive a sharp Moser-Trudinger inequality for the borderline Sobolev imbedding of W{2,n/2}(B_n) into the exponential class, where B_n is the unit ball of Rn. The corresponding sharp results for the spaces W_0{d,n/d}(\Omega) are well known, for general domains \Omega, and are due to Moser and Adams. When the zero boundary condition is removed the only known results are for d=1 and are due to Chang-Yang, Cianchi and Leckband. Our proof is based on general abstract results recently obtained by the authors, and on a new integral representation formula for the "canonical" solution of the Poisson equation on the ball, that is the unique solution of the equation \Delta u=f which is orthogonal to the harmonic functions on the ball. The main technical difficulty of the paper is to establish an asymptotically sharp growth estimate for the kernel of such representation, expressed in terms of its distribution function. We will also consider the situation where the exponential class is endowed with more general Borel measures, and obtain corresponding sharp Moser-Trudinger inequalities of trace type.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.