Papers
Topics
Authors
Recent
Search
2000 character limit reached

Key Polynomials

Published 9 Feb 2011 in math.AG and math.AC | (1102.1906v4)

Abstract: The notion of key polynomials was first introduced in 1936 by S. Maclane in the case of discrete rank 1 valuations. . Let K -> L be a field extension and {\nu} a valuation of K. The original motivation for introducing key polynomials was the problem of describing all the extensions {\mu} of {\nu} to L. Take a valuation {\mu} of L extending the valuation {\nu}. In the case when {\nu} is discrete of rank 1 and L is a simple algebraic extension of K Maclane introduced the notions of key polynomials for {\mu} and augmented valuations and proved that {\mu} is obtained as a limit of a family of augmented valuations on the polynomial ring K[x]. In a series of papers, M. Vaqui\'e generalized MacLane's notion of key polynomials to the case of arbitrary valuations {\nu} (that is, valuations which are not necessarily discrete of rank 1). In the paper Valuations in algebraic field extensions, published in the Journal of Algebra in 2007, F.J. Herrera Govantes, M.A. Olalla Acosta and M. Spivakovsky develop their own notion of key polynomials for extensions (K, {\nu}) -> (L, {\mu}) of valued fields, where {\nu} is of archimedian rank 1 (not necessarily discrete) and give an explicit description of the limit key polynomials. Our purpose in this paper is to clarify the relationship between the two notions of key polynomials already developed by vaqui\'e and by F.J. Herrera Govantes, M.A. Olalla Acosta and M. Spivakovsky.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.