Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 78 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 24 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 120 tok/s Pro
Kimi K2 193 tok/s Pro
GPT OSS 120B 459 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Using Feature Weights to Improve Performance of Neural Networks (1101.4918v1)

Published 25 Jan 2011 in cs.LG, cs.AI, and cs.CV

Abstract: Different features have different relevance to a particular learning problem. Some features are less relevant; while some very important. Instead of selecting the most relevant features using feature selection, an algorithm can be given this knowledge of feature importance based on expert opinion or prior learning. Learning can be faster and more accurate if learners take feature importance into account. Correlation aided Neural Networks (CANN) is presented which is such an algorithm. CANN treats feature importance as the correlation coefficient between the target attribute and the features. CANN modifies normal feed-forward Neural Network to fit both correlation values and training data. Empirical evaluation shows that CANN is faster and more accurate than applying the two step approach of feature selection and then using normal learning algorithms.

Citations (6)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.