Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 67 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 128 tok/s Pro
Kimi K2 204 tok/s Pro
GPT OSS 120B 461 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Stein's method in high dimensions with applications (1101.4454v2)

Published 24 Jan 2011 in math.PR

Abstract: Let $h$ be a three times partially differentiable function on $Rn$, let $X=(X_1,\dots,X_n)$ be a collection of real-valued random variables and let $Z=(Z_1,\dots,Z_n)$ be a multivariate Gaussian vector. In this article, we develop Stein's method to give error bounds on the difference $E h(X) - E h(Z)$ in cases where the coordinates of $X$ are not necessarily independent, focusing on the high dimensional case $n\to\infty$. In order to express the dependency structure we use Stein couplings, which allows for a broad range of applications, such as classic occupancy, local dependence, Curie-Weiss model etc. We will also give applications to the Sherrington-Kirkpatrick model and last passage percolation on thin rectangles.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.