Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 89 tok/s
Gemini 2.5 Pro 58 tok/s Pro
GPT-5 Medium 39 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 119 tok/s Pro
Kimi K2 188 tok/s Pro
GPT OSS 120B 460 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Randomly biased walks on subcritical trees (1101.4041v1)

Published 20 Jan 2011 in math.PR

Abstract: As a model of trapping by biased motion in random structure, we study the time taken for a biased random walk to return to the root of a subcritical Galton-Watson tree. We do so for trees in which these biases are randomly chosen, independently for distinct edges, according to a law that satisfies a logarithmic non-lattice condition. The mean return time of the walk is in essence given by the total conductance of the tree. We determine the asymptotic decay of this total conductance, finding it to have a pure power-law decay. In the case of the conductance associated to a single vertex at maximal depth in the tree, this asymptotic decay may be analysed by the classical defective renewal theorem, due to the non-lattice edge-bias assumption. However, the derivation of the decay for total conductance requires computing an additional constant multiple outside the power-law that allows for the contribution of all vertices close to the base of the tree. This computation entails a detailed study of a convenient decomposition of the tree, under conditioning on the tree having high total conductance. As such, our principal conclusion may be viewed as a development of renewal theory in the context of random environments. For randomly biased random walk on a supercritical Galton-Watson tree with positive extinction probability, our main results may be regarded as a description of the slowdown mechanism caused by the presence of subcritical trees adjacent to the backbone that may act as traps that detain the walker. Indeed, this conclusion is exploited in \cite{GerardAlan} to obtain a stable limiting law for walker displacement in such a tree.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube