Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 87 tok/s
Gemini 2.5 Pro 60 tok/s Pro
GPT-5 Medium 28 tok/s
GPT-5 High 28 tok/s Pro
GPT-4o 81 tok/s
GPT OSS 120B 453 tok/s Pro
Kimi K2 229 tok/s Pro
2000 character limit reached

On the Sample Information About Parameter and Prediction (1101.0899v1)

Published 5 Jan 2011 in stat.ME

Abstract: The Bayesian measure of sample information about the parameter, known as Lindley's measure, is widely used in various problems such as developing prior distributions, models for the likelihood functions and optimal designs. The predictive information is defined similarly and used for model selection and optimal designs, though to a lesser extent. The parameter and predictive information measures are proper utility functions and have been also used in combination. Yet the relationship between the two measures and the effects of conditional dependence between the observable quantities on the Bayesian information measures remain unexplored. We address both issues. The relationship between the two information measures is explored through the information provided by the sample about the parameter and prediction jointly. The role of dependence is explored along with the interplay between the information measures, prior and sampling design. For the conditionally independent sequence of observable quantities, decompositions of the joint information characterize Lindley's measure as the sample information about the parameter and prediction jointly and the predictive information as part of it. For the conditionally dependent case, the joint information about parameter and prediction exceeds Lindley's measure by an amount due to the dependence. More specific results are shown for the normal linear models and a broad subfamily of the exponential family. Conditionally independent samples provide relatively little information for prediction, and the gap between the parameter and predictive information measures grows rapidly with the sample size.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.