Geometric $K$-homology with coefficients II (1101.0703v2)
Abstract: We discuss the analytic aspects of the geometric model for $K$-homology with coefficients in $\mathbb{Z}/k\mathbb{Z}$ constructed in "Geometric K-homology with coefficients I". In particular, using results of Rosenberg and Schochet, we construct a map from this geometric model to its analytic counterpart. Moreover, we show that this map is an isomorphism in the case of a finite CW-complex. The relationship between this map and the Freed-Melrose index theorem is also discussed. Many of these results are analogous to those of Baum and Douglas in the case of $spinc$ manifolds, geometric K-homology, and Atiyah-Singer index theorem.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.