Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 80 tok/s
Gemini 2.5 Pro 28 tok/s Pro
GPT-5 Medium 32 tok/s Pro
GPT-5 High 38 tok/s Pro
GPT-4o 125 tok/s Pro
Kimi K2 181 tok/s Pro
GPT OSS 120B 462 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Bayesian inference for a class of latent Markov models for categorical longitudinal data (1101.0391v2)

Published 2 Jan 2011 in stat.ME

Abstract: We propose a Bayesian inference approach for a class of latent Markov models. These models are widely used for the analysis of longitudinal categorical data, when the interest is in studying the evolution of an individual unobservable characteristic. We consider, in particular, the basic latent Markov, which does not account for individual covariates, and its version that includes such covariates in the measurement model. The proposed inferential approach is based on a system of priors formulated on a transformation of the initial and transition probabilities of the latent Markov chain. This system of priors is equivalent to one based on Dirichlet distributions. In order to draw samples from the joint posterior distribution of the parameters and the number of latent states, we implement a reversible jump algorithm which alternates moves of Metropolis-Hastings type with moves of split/combine and birth/death types. The proposed approach is illustrated through two applications based on longitudinal datasets.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.