Perturbation of Sectorial Projections of Elliptic Pseudo-differential Operators (1101.0067v4)
Abstract: Over a closed manifold, we consider the sectorial projection of an elliptic pseudo-differential operator A of positive order with two rays of minimal growth. We show that it depends continuously on A when the space of pseudo-differential operators is equipped with a certain topology which we explicitly describe. Our main application deals with a continuous curve of arbitrary first order linear elliptic differential operators over a compact manifold with boundary. Under the additional assumption of the weak inner unique continuation property, we derive the continuity of a related curve of Calderon projections and hence of the Cauchy data spaces of the original operator curve. In the Appendix, we describe a topological obstruction against a verbatim use of R. Seeley's original argument for the complex powers, which was seemingly overlooked in previous studies of the sectorial projection.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.