Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Target-driven merging of Taxonomies (1012.4855v1)

Published 22 Dec 2010 in cs.DB

Abstract: The proliferation of ontologies and taxonomies in many domains increasingly demands the integration of multiple such ontologies. The goal of ontology integration is to merge two or more given ontologies in order to provide a unified view on the input ontologies while maintaining all information coming from them. We propose a new taxonomy merging algorithm that, given as input two taxonomies and an equivalence matching between them, can generate an integrated taxonomy in a fully automatic manner. The approach is target-driven, i.e. we merge a source taxonomy into the target taxonomy and preserve the structure of the target ontology as much as possible. We also discuss how to extend the merge algorithm providing auxiliary information, like additional relationships between source and target concepts, in order to semantically improve the final result. The algorithm was implemented in a working prototype and evaluated using synthetic and real-world scenarios.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Salvatore Raunich (1 paper)
  2. Erhard Rahm (28 papers)
Citations (9)

Summary

We haven't generated a summary for this paper yet.