2000 character limit reached
Real analytic approximations which almost preserve Lipschitz constants of functions defined on the Hilbert space
Published 20 Dec 2010 in math.FA | (1012.4339v3)
Abstract: Let $X$ be a separable real Hilbert space. We show that for every Lipschitz function $f:X\rightarrow\mathbb{R}$, and for every $\epsilon>0$, there exists a Lipschitz, real analytic function $g:X\rightarrow\mathbb{R}$ such that $|f(x)-g(x)|\leq \epsilon$ and $\textrm{Lip}(g)\leq \textrm{Lip}(f)+\epsilon$.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.