Papers
Topics
Authors
Recent
2000 character limit reached

Non Abelian Bent Functions

Published 18 Dec 2010 in cs.CR and math.RT | (1012.4079v1)

Abstract: Perfect nonlinear functions from a finite group $G$ to another one $H$ are those functions $f: G \rightarrow H$ such that for all nonzero $\alpha \in G$, the derivative $d_{\alpha}f: x \mapsto f(\alpha x) f(x){-1}$ is balanced. In the case where both $G$ and $H$ are Abelian groups, $f: G \rightarrow H$ is perfect nonlinear if and only if $f$ is bent i.e for all nonprincipal character $\chi$ of $H$, the (discrete) Fourier transform of $\chi \circ f$ has a constant magnitude equals to $|G|$. In this paper, using the theory of linear representations, we exhibit similar bentness-like characterizations in the cases where $G$ and/or $H$ are (finite) non Abelian groups. Thus we extend the concept of bent functions to the framework of non Abelian groups.

Citations (28)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.