Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 71 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 21 tok/s Pro
GPT-4o 81 tok/s Pro
Kimi K2 231 tok/s Pro
GPT OSS 120B 435 tok/s Pro
Claude Sonnet 4 33 tok/s Pro
2000 character limit reached

Moduli of vortices and Grassmann manifolds (1012.4023v2)

Published 17 Dec 2010 in math.AG, hep-th, math-ph, and math.MP

Abstract: We use the framework of Quot schemes to give a novel description of the moduli spaces of stable n-pairs, also interpreted as gauged vortices on a closed Riemann surface with target Mat(r x n, C), where n >= r. We then show that these moduli spaces embed canonically into certain Grassmann manifolds, and thus obtain natural Kaehler metrics of Fubini-Study type; these spaces are smooth at least in the local case r=n. For abelian local vortices we prove that, if a certain "quantization" condition is satisfied, the embedding can be chosen in such a way that the induced Fubini-Study structure realizes the Kaehler class of the usual L2 metric of gauged vortices.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.