Non-abelian vortices on CP^1 and Grassmannians (1211.1662v2)
Abstract: Many properties of the moduli space of abelian vortices on a compact Riemann surface are known. For non-abelian vortices the moduli space is less well understood. Here we consider non-abelian vortices on the Riemann sphere CP1, and we study their moduli spaces near the Bradlow limit. We give an explicit description of the moduli space as a Kahler quotient of a finite-dimensional linear space. The dimensions of some of these moduli spaces are derived. Strikingly, there exist non-abelian vortex configurations on CP1, with non-trivial vortex number, for which the moduli space is a point. This is in stark contrast to the moduli space of abelian vortices. For a special class of non-abelian vortices the moduli space is a Grassmannian, and the metric near the Bradlow limit is a natural generalization of the Fubini--Study metric on complex projective space. We use this metric to investigate the statistical mechanics of non-abelian vortices. The partition function is found to be analogous to the one for abelian vortices.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.