The asymptotic expansion of Tracy-Widom GUE law and symplectic invariants (1012.2752v1)
Abstract: We establish the relation between two objects: an integrable system related to Painlev\'e II equation, and the symplectic invariants of a certain plane curve S(TW). This curve describes the average eigenvalue density of a random hermitian matrix spectrum near a hard edge (a bound for its maximal eigenvalue). This shows that the s -> -infinity asymptotic expansion of Tracy-Widow law F_{GUE}(s), governing the distribution of the maximal eigenvalue in hermitian random matrices, is given by symplectic invariants.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.