Papers
Topics
Authors
Recent
2000 character limit reached

Hyperplane sections and the subtlety of the Lefschetz properties

Published 12 Dec 2010 in math.AC | (1012.2601v1)

Abstract: The weak and strong Lefschetz properties are two basic properties that Artinian algebras may have. Both Lefschetz properties may vary under small perturbations or changes of the characteristic. We study these subtleties by proposing a systematic way of deforming a monomial ideal failing the weak Lefschetz property to an ideal with the same Hilbert function and the weak Lefschetz property. In particular, we lift a family of Artinian monomial ideals to finite level sets of points in projective space with the property that a general hyperplane section has the weak Lefschetz property in almost all characteristics, whereas a special hyperplane section does not have this property in any characteristic.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.