Papers
Topics
Authors
Recent
2000 character limit reached

Semiclassical limit for mixed states with singular and rough potentials

Published 11 Dec 2010 in math.AP | (1012.2483v1)

Abstract: We consider the semiclassical limit for the Heisenberg-von Neumann equation with a potential which consists of the sum of a repulsive Coulomb potential, plus a Lipschitz potential whose gradient belongs to $BV$; this assumption on the potential guarantees the well posedness of the Liouville equation in the space of bounded integrable solutions. We find sufficient conditions on the initial data to ensure that the quantum dynamics converges to the classical one. More precisely, we consider the Husimi functions of the solution of the Heisenberg-von Neumann equation, and under suitable assumptions on the initial data we prove that they converge, as $\e \to 0$, to the unique bounded solution of the Liouville equation (locally uniformly in time).

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.