Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 63 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 19 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 212 tok/s Pro
GPT OSS 120B 438 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

High rank linear syzygies on low rank quadrics (1012.0933v1)

Published 4 Dec 2010 in math.AG and math.AC

Abstract: We study the linear syzygies of a homogeneous ideal I in a polynomial ring S, focusing on the graded betti numbers b_(i,i+1) = dim_k Tor_i(S/I, k)(i+1). For a variety X and divisor D with S = Sym(H0(D)*), what conditions on D ensure that b(i,i+1) is nonzero? Eisenbud has shown that a decomposition D = A + B such that A and B have at least two sections gives rise to determinantal equations (and corresponding syzygies) in I_X; and conjectured that if I_2 is generated by quadrics of rank at most 4, then the last nonvanishing b_(i,i+1) is a consequence of such equations. We describe obstructions to this conjecture and prove a variant. The obstructions arise from toric specializations of the Rees algebra of Koszul cycles, and we give an explicit construction of toric varieties with minimal linear syzygies of arbitrarily high rank. This gives one answer to a question posed by Eisenbud and Koh about specializations of syzygies.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube