Papers
Topics
Authors
Recent
Search
2000 character limit reached

Asymptotic ergodicity of the eigenvalues of random operators in the localized phase

Published 3 Dec 2010 in math.SP, math-ph, math.MP, and math.PR | (1012.0831v2)

Abstract: We prove that, for a general class of random operators, the family of the unfolded eigenvalues in the localization region is asymptotically ergodic in the sense of N. Minami (see [Mi:11]). N. Minami conjectured this to be the case for discrete Anderson model in the localized regime. We also provide a local analogue of this result. From the asymptotics ergodicity, one can recover the statistics of the level spacings as well as a number of other spectral statistics. Our proofs rely on the analysis developed in abs/1011.1832.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.