Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 39 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 118 tok/s Pro
Kimi K2 181 tok/s Pro
GPT OSS 120B 429 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Asymptotic ergodicity of the eigenvalues of random operators in the localized phase (1012.0831v2)

Published 3 Dec 2010 in math.SP, math-ph, math.MP, and math.PR

Abstract: We prove that, for a general class of random operators, the family of the unfolded eigenvalues in the localization region is asymptotically ergodic in the sense of N. Minami (see [Mi:11]). N. Minami conjectured this to be the case for discrete Anderson model in the localized regime. We also provide a local analogue of this result. From the asymptotics ergodicity, one can recover the statistics of the level spacings as well as a number of other spectral statistics. Our proofs rely on the analysis developed in abs/1011.1832.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.