Papers
Topics
Authors
Recent
2000 character limit reached

Convex Graph Invariants (1012.0623v1)

Published 3 Dec 2010 in math.OC, cs.DM, and math.CO

Abstract: The structural properties of graphs are usually characterized in terms of invariants, which are functions of graphs that do not depend on the labeling of the nodes. In this paper we study convex graph invariants, which are graph invariants that are convex functions of the adjacency matrix of a graph. Some examples include functions of a graph such as the maximum degree, the MAXCUT value (and its semidefinite relaxation), and spectral invariants such as the sum of the $k$ largest eigenvalues. Such functions can be used to construct convex sets that impose various structural constraints on graphs, and thus provide a unified framework for solving a number of interesting graph problems via convex optimization. We give a representation of all convex graph invariants in terms of certain elementary invariants, and describe methods to compute or approximate convex graph invariants tractably. We also compare convex and non-convex invariants, and discuss connections to robust optimization. Finally we use convex graph invariants to provide efficient convex programming solutions to graph problems such as the deconvolution of the composition of two graphs into the individual components, hypothesis testing between graph families, and the generation of graphs with certain desired structural properties.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.