A generalized plasma and interpolation between classical random matrix ensembles
Abstract: The eigenvalue probability density functions of the classical random matrix ensembles have a well known analogy with the one component log-gas at the special couplings \beta = 1,2 and 4. It has been known for some time that there is an exactly solvable two-component log-potential plasma which interpolates between the \beta =1 and 4 circular ensemble, and an exactly solvable two-component generalized plasma which interpolates between \beta = 2 and 4 circular ensemble. We extend known exact results relating to the latter --- for the free energy and one and two-point correlations --- by giving the general (k_1+k_2)-point correlation function in a Pfaffian form. Crucial to our working is an identity which expresses the Vandermonde determinant in terms of a Pfaffian. The exact evaluation of the general correlation is used to exhibit a perfect screening sum rule.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.