Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 81 tok/s
Gemini 2.5 Pro 57 tok/s Pro
GPT-5 Medium 31 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 104 tok/s Pro
GPT OSS 120B 460 tok/s Pro
Kimi K2 216 tok/s Pro
2000 character limit reached

A generalized plasma and interpolation between classical random matrix ensembles (1012.0597v1)

Published 2 Dec 2010 in math-ph and math.MP

Abstract: The eigenvalue probability density functions of the classical random matrix ensembles have a well known analogy with the one component log-gas at the special couplings \beta = 1,2 and 4. It has been known for some time that there is an exactly solvable two-component log-potential plasma which interpolates between the \beta =1 and 4 circular ensemble, and an exactly solvable two-component generalized plasma which interpolates between \beta = 2 and 4 circular ensemble. We extend known exact results relating to the latter --- for the free energy and one and two-point correlations --- by giving the general (k_1+k_2)-point correlation function in a Pfaffian form. Crucial to our working is an identity which expresses the Vandermonde determinant in terms of a Pfaffian. The exact evaluation of the general correlation is used to exhibit a perfect screening sum rule.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.