Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 147 tok/s
Gemini 2.5 Pro 40 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 58 tok/s Pro
Kimi K2 201 tok/s Pro
GPT OSS 120B 434 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

Small eigenvalues of the Laplacian for algebraic measures in moduli space, and mixing properties of the Teichmüller flow (1011.5472v1)

Published 24 Nov 2010 in math.DS and math.DG

Abstract: We consider the $SL(2,R)$ action on moduli spaces of quadratic differentials. If $\mu$ is an $SL(2,R)$-invariant probability measure, crucial information about the associated representation on $L2(\mu)$ (and in particular, fine asymptotics for decay of correlations of the diagonal action, the Teichm\"uller flow) is encoded in the part of the spectrum of the corresponding foliated hyperbolic Laplacian that lies in $(0,1/4)$ (which controls the contribution of the complementary series). Here we prove that the essential spectrum of an invariant algebraic measure is contained in $[1/4,\infty)$, i.e., for every $\delta>0$, there are only finitely many eigenvalues (counted with multiplicity) in $(0,1/4-\delta)$. In particular, all algebraic invariant measures have a spectral gap.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.