2000 character limit reached
    
  Expected length of a product of random reflections (1011.5358v1)
    Published 24 Nov 2010 in math.CO
  
  Abstract: We present a simple formula for the expected number of inversions in a permutation of size $n$ obtained by applying $t$ random (not necessarily adjacent) transpositions to the identity permutation. More general, for any finite irreducible Coxeter group belonging to one of the infinite families (type A, B, D, and I), an exact expression is obtained for the expected length of a product of $t$ random reflections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.