Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 164 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 72 tok/s Pro
Kimi K2 204 tok/s Pro
GPT OSS 120B 450 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

Slice Sampling with Adaptive Multivariate Steps: The Shrinking-Rank Method (1011.4722v1)

Published 22 Nov 2010 in stat.CO

Abstract: The shrinking rank method is a variation of slice sampling that is efficient at sampling from multivariate distributions with highly correlated parameters. It requires that the gradient of the log-density be computable. At each individual step, it approximates the current slice with a Gaussian occupying a shrinking-dimension subspace. The dimension of the approximation is shrunk orthogonally to the gradient at rejected proposals, since the gradients at points outside the current slice tend to point towards the slice. This causes the proposal distribution to converge rapidly to an estimate of the longest axis of the slice, resulting in states that are less correlated than those generated by related methods. After describing the method, we compare it to two other methods on several distributions and obtain favorable results.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.